

Microsomal 25-Hydroxylation of Vitamin D_2 and Vitamin D_3 in Pig Liver

Eva Axén,^{1*} Tomas Bergman² and Kjell Wikvall¹

¹Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, 751 23 Uppsala and ²Department of Chemistry I, Karolinska Institutet, 104 01 Stockholm, Sweden

A microsomal cytochrome P-450 catalysing 25-hydroxylation of vitamin D₂ was purified from both male and female pigs to apparent homogeneity and a specific cytochrome P-450 content of 13 and 15.4 nmol \times mg of protein⁻¹, respectively. The enzyme also catalysed 25-hydroxylation of vitamin D₃. The ratio between the 25-hydroxylase activities towards vitamin D_2 and D_3 was essentially the same in the different purification steps as well as in the apparently homogeneous enzyme preparation. The two enzyme activities showed the same pH optimum and decreased in parallel upon partial denaturation of the enzyme. Cholecalciferol competitively inhibited 25-hydroxylation of vitamin D_2 and vice versa. The non-steroidal cytochrome P-450 inhibitor ketoconazole inhibited both enzyme activities and the K_i values were the same. The cytochrome P-450 showed the same apparent M_r , substrate specificity and N-terminal amino acid sequence as the previously purified vitamin D_3 25-hydroxylase from pig liver microsomes. A monoclonal antibody raised against the vitamin D_3 25-hydroxylase also recognized the vitamin D_2 25-hydroxylase. The antibody immunoprecipitated the 25-hydroxylase activity towards both vitamin D_2 and D_3 in the purified enzyme. Taken together, the results show that the 25-hydroxylation of vitamin D_2 and D_3 is catalysed by the same microsomal cytochrome P-450 in pig liver microsomes. The properties of this 25-hydroxylase are discussed in relation to present knowledge concerning previously well-characterized vitamin D₃ 25-hydroxylases that are not able to catalyse 25-hydroxylation of vitamin D_2 .

J. Steroid Biochem. Molec. Biol., Vol. 51, No. 1/2, pp. 97-106, 1994

INTRODUCTION

Vitamin D_2 which differs structurally from vitamin D_3 in the side chain is formed by ultraviolet irradiation of the plant sterol ergosterol. Vitamin D₂ has been frequently used to treat and prevent vitamin D deficiency and is used in parenteral vitamin formulations. A 25-hydroxylation is the first step in the bioactivation of both vitamin D_3 and D_2 into their active hormonal forms [1, 2]. The 25-hydroxylation of vitamin D_3 is catalysed by cytochrome P-450 enzymes in both the microsomal and mitochondrial fractions of liver [3-6]. The relative importance of microsomal and mitochondrial 25-hydroxylation in the bioactivation process is not known at present. A male-specific microsomal enzyme from rat liver has been extensively studied [3, 4, 7]. It is apparently identical to rat liver microsomal testosterone 16a-hydroxylase CYP 2C11 [8]. A mitochondrial vitamin D₃ 25-hydroxylase which is

identical to sterol 27-hydroxylase, CYP 27 [10-13]. Much less but also conflicting information is available about the enzyme(s) catalysing 25-hydroxylation of vitamin D₂ [3, 9, 14–17]. Surprisingly, none of the vitamin D₃ 25-hydroxylases studied previously appears to be active in 25-hydroxylation of vitamin D_2 . Thus, Andersson et al. [3] reported that the apparently homogeneous, male-specific, microsomal 25-hydroxylase from rat liver did not show 25-hydroxylase activity towards vitamin D₂. In a recent report, Guo et al. [9] reported that COS-cells transfected with cDNA encoding human CYP 27 expressed 25-hydroxylase activity towards vitamin D_3 but not towards vitamin D_2 . In fact, no cytochrome P-450 active in 25-hydroxylation of vitamin D₂ has been purified to homogeneity or characterized so far. Consequently, it is not known whether vitamin D_2 and D_3 are 25-hydroxylated by the same or separate species of cytochrome P-450 in liver.

present in rabbit [5], rat [6] and man [9] appears to be

Recently a microsomal vitamin D_3 25-hydroxylase was purified from pig liver [18]. The aim of the present

	Coto charana D 450	Vitamin D ₂ 25	-hydroxylation	Vitamin D_3 25-hydroxylation			
	Cytochrome P -450 (nmol × mg of protein ⁻¹)	$(pmol \times min^{-1} \times mg of protein^{-1})$	$(pmol \times min^{-1} \times nmol of P-450^{-1})$	$(pmol \times min^{-1} \times mg of protein^{-1})$	$(pmol \times min^{-1} \times nmol of P-450^{-1})$		
Microsomes	0.5	0.6	1.2	0.8	1.6		
Polyethylene glycol							
(8-15%) precipitate	0.3	0.4	1.3	1.3	4.3		
Octylamine-Sepharose Hydroxylapatite	1.4	5.2	3.7	9.4	6.7		
(120 mM-phosphate eluate) Q-Sepharose	1.9	62.4	32.8	101.9	53.6		
(non-bound fraction) S-Sepharose	4.4	233.0	53.0	611.1	138.9		
(25 mM-sodium acetate eluate)	13.0	1270.0	97.7	2407.0	185.1		

Table 1. Hydroxylase activities at different steps in the purification of a microsomal cytochrome P-450 vitamin D_2 25-hydroxylase from liver of untreated castrated pigs

Details of the purification and incubation procedures are given in the Experimental section.

study was to purify and characterize a cytochrome P-450 catalysing 25-hydroxylation of vitamin D_2 . The same procedures were applied as used for isolation of the vitamin D_3 25-hydroxylase [18]. Strong evidence is provided that the same microsomal cytochrome P-450 catalyses the 25-hydroxylation of both vitamin D_2 and D_3 in pig liver.

EXPERIMENTAL

Materials

25-Hydroxy[23, 24(n)-³H]vitamin D₃ (105.5 Ci/mmol), 1α ,25-dihydroxy-[23,24(*n*)³H]vitamin D₃ (91.4 Ci/mmol), and [4-¹⁴C]cholesterol (61 Ci/mmol) were obtained from Amersham International (Amersham, Bucks., England). $5\beta - [7\beta - {}^{3}H]$ Cholestane- 3α , 7α diol (400 mCi/mmol) was prepared as described previously [19, 20]. Unlabelled vitamin D_2 and D_3 were obtained from Sigma Chemical Co. (St Louis, MO). Unlabelled 1a-hydroxyvitamin D3 and 1a-hydroxyvitamin D₂ were generous gifts from Lövens (Copenhagen, Denmark) and Roche Products Ltd (Stockholm, Sweden), respectively. Unlabelled 25-hydroxyvitamin D_3 was obtained from Solvay Duphar B.V. (the Netherlands). Unlabelled 1α ,25-dihydroxyvitamin D₃ was obtained from Roche. Unlabelled 25-hydroxyvitamin D₂ and ketoconazole were generous gifts from Dr Inger Holmberg and Janssen Pharmaceutica, respectively. Hydroxylapatite (Bio-Rad, Richmond, CA) was mixed with an equal amount (w/w) of Whatman CF-1 cellulose powder before chromatography. Octylamine-Sepharose 4B was prepared by coupling 1,8-diamino-octane to CNBr-Sepharose 4B (Pharmacia, Uppsala, Sweden). Emulgen 913 was obtained from Kao Chemicals (Tokyo, Japan). Q-Sepharose fast flow and S-Sepharose fast flow were obtained from Pharmacia. The remaining chemicals were reagent grade.

Enzyme purification

Liver microsomes from male (castrated) or female pigs were used as a source of enzyme. Cytochrome

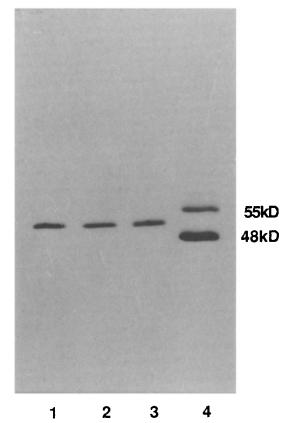


Fig. 1. SDS-PAGE of purified microsomal 25-hydroxylating cytochromes P-450 from pig liver. The protein samples were pretreated with SDS and mercaptoethanol at 100°C for 2 min and submitted to polyacrylamide-gel electrophoresis in the presence of SDS. Migration was from top to bottom. Gel electrophoresis was performed according to Laemmli [32] with 15% acrylamide and 0.09% bisacrylamide slab gels $(15 \times 10 \times 0.1 \text{ cm})$ containing 0.1% (w/v) SDS. The gels were polymerized by addition of 0.1% (v/v) tetramethylenediamine and 0.1% (w/v) ammonium hydrogen sulphate. Electrophoresis was carried out at 45 mA/slab gel and the gels were stained as described by Wray et al. [33]. Lane 1, purified vitamin D_2 25-hydroxylase from female pig (1 µg); lane 2, purified vitamin D_2 25-hydroxylase from castrated pig (1 μ g); lane 3, purified vitamin D₃ 25-hydroxylase [cf 18]; lane 4, M_r standards were a mixture of cytochromes P-450 IA2 and IIB4 from rabbit liver microsomal fraction, prepared in this laboratory as described by Haugen and Coon [34].

vitamin D_3 from pig, rat, rabbit and human liver																					
Source	Residue	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Pig liver microsoma	1								_												
25-hydroxylase		G	L	L	Т	G	D	L	L	G	Ι	L	Α	L	Α	М	v	Ι	F	L	L
Rat liver microsoma	վ																				
CYP 2C11		М	D	Р	V	L	v	L	v	L	Т	L	S	S	L	L	L	L	S	L	W
Rat liver mitochond	rial																				
CYP 27		М	Α	v	L	S	R	М	R	L	R	W	Α	L	L	D	Т	R	v	М	G
Rabbit liver mitoche	ondrial																				
CYP 27		Α	L	Р	Α	D	Ε	Α	Α	Q	Α	Р	G	Α	G	Р	G	D	R	R	R
Human liver mitoch	ondrial																				
CYP 27		Α	L	Р	S	D	К	Α	Т	G	Α	Р	G	Α	G	Р	G	v	R	R	R

Table 2. N-terminal amino acid sequences of microsomal and mitochondrial cytochromes P-450 active in the 25-hydroxylation of vitamin D₃ from pig, rat, rabbit and human liver

P-450, active in 25-hydroxylation of vitamin D_2 , was purified as described previously for the isolation of a vitamin D_3 25-hydroxylase from pig liver microsomes [18]. NADPH-cytochrome *P*-450 reductase was prepared from liver microsomes of phenobarbital-treated rats as described by Yasukochi and Masters [21]. Protein and cytochrome *P*-450 were determined as described by Lowry *et al.* [22] and Omura and Sato [23], respectively.

Incubation procedures

Incubations were performed as described previously [18] to incubations with vitamin D_2 and 1α -hydroxyvitamin D_2 no labelled products were added. It was assumed that the recovery for vitamin D_2 metabolites was the same as for corresponding vitamin D_3 metabolites. The retention time for 25-hydroxyvitamin D_2 was 13.5 min and for 1α ,25-dihydroxyvitamin D_2

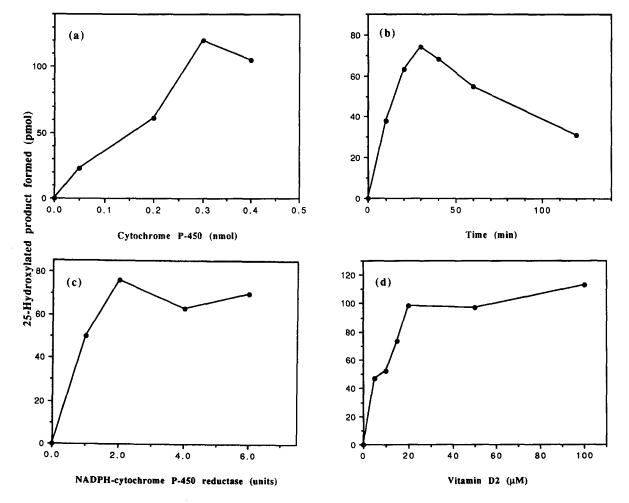


Fig. 2. Effects of cytochrome P-450 concentration (a), time (b), NADPH-cytochrome P-450 reductase concentration (c) and vitamin D_2 concentration (d) on the rate of 25-hydroxylation of vitamin D_2 . Incubations were performed as described in the Experimental section except when the concentration of a component was varied. The results from three experiments are given as the means.

Fig. 3. Effects of pH, temperature and N-bromosuccinimide on the 25-hydroxylase activity towards vitamin D_2 and D_3 . Incubations were performed as described in the Experimental section except that the substrate concentration was 25 μ M and the incubation time was 30 min. Incubations with vitamin D_2 is shown as (\blacksquare) and incubations with vitamin D_3 as (\square). In (a) the incubations were performed at the indicated pH. In (b) the enzyme was preincubated for 3 min at the indicated temperature, chilled on ice and then the other components were added for incubation. In (c) the enzyme was preincubated with the indicated amount of N-bromosuccinimide for 1 h at 0°C. The N-bromosuccinimide was dissolved in 50 mM-potassium phosphate, pH 7.4, 20% glycerol and 0.1 mM EDTA.

	pig moei				
Reaction measured	Microsomal activity (pmol \times min ⁻¹ \times nmol of cytochrome P-450 ⁻¹)	Cytochrome P -450 activity (pmol × min ⁻¹ × nmol of cytochrome P -450 ⁻¹)			
Vitamin D ₂ 25-hydroxylation	1.2 ± 0.2	98 <u>+</u> 5			
Vitamin D_3 25-hydroxylation	1.5 ± 0.4	188 ± 36			
1α -Hydroxyvitamin D ₂ 25-hydroxylation	ND	756 ± 122			
1α -Hydroxyvitamin D ₃ 25-hydroxylation	3.4 ± 0.5	841 ± 65			
5β -Cholestane- 3α , 7α -diol 25-hydroxylation	≤20	1900 ± 487			
Cholesterol 25-hydroxylation	<1	<1			

Table 3. 25-Hydroxylase activities in microsomes and for the purified vitamin D_2 25-hydroxylase from pig liver

Incubations were performed as described in the Experimental section. The results from five experiments are given as the means \pm SD.

ND, not determined.

11.0 min in the straight-phase HPLC system. In the reverse-phase HPLC system the retention times were 6.4 and 7.8 min, respectively. The mobile phases in straight- and reverse-phase HPLC were the same as used for corresponding vitamin D_3 metabolites. The identity of the enzymatically formed 25-hydroxyvita-min D_2 was confirmed by combined gas chromatog-raphy-mass spectrometry [15, 24].

Incubations with antibody-coupled Sepharose

A monoclonal antibody, mAb 25H6, raised against the pig liver microsomal vitamin D₃ 25-hydroxylase [18] and an irrelevant monoclonal antibody raised against a mitochondrial 27-hydroxylase were coupled to CNBr–Sepharose. Cytochrome P-450 (0.2 nmol) was incubated for 1 h with the indicated amounts of Sepharose-bound monoclonal antibody in 0.4 ml of 50 mM-Tris/acetate buffer, pH 7.4, containing 20% glycerol, 0.1 mM-EDTA and 0.7% (w/w) CHAPS. Sepharose without antibody was used as a control. The Sepharose was washed twice with the same buffer without CHAPS and pooled. The reaction mixture, 1 ml, was incubated for 10 min at 37°C, terminated, extracted and analysed as described above.

Structural analysis

Cytochrome P-450 from liver microsomes was precipitated with acetone and the precipitate was used for N-terminal sequence determination. N-terminal sequence analysis was performed with an Applied Biosystems 470A instrument. Phenylthiohydantoin derivatives were identified by reverse-phase HPLC [25].

RESULTS

Purification of microsomal vitamin D_2 25-hydroxylating cytochrome P-450

Cytochrome P-450, active in the 25-hydroxylation of vitamin D_2 , was isolated from liver microsomes of castrated pigs, by solubilization with sodium cholate, precipitation with polyethylene glycol 6000 and chro-

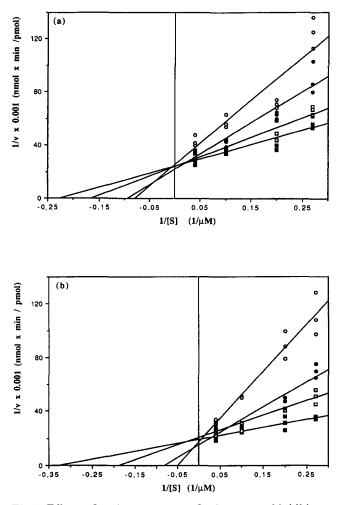


Fig. 4. Effects of various amounts of substrate and inhibitory effect of vitamin D_3 on the rate of 25-hydroxylation of vitamin D_2 and vice versa by the vitamin D_2 25-hydroxylase. Incubations were performed as described in the Experimental section, except that the concentrations of the substrates vitamin D_2 (a) and vitamin D_3 (b) were varied. In inhibition experiments, a constant concentration of vitamin D_3 ; $0 \mu M$ (\square); $5 \mu M$ (\square); $10 \mu M$ (\oplus); $15 \mu M$ (\bigcirc) [Fig. 5(a)] and vitamin D_2 ; $0 \mu M$ (\square); $2.5 \mu M$ (\square); $5 \mu M$ (\bigcirc) [Fig. 5(b)], respectively, was added as inhibitor. The continuous line is the corresponding linear regression fitting while the data points are from the three experimental values with $r \ge 0.77$ (0.77; 0.88; 0.83; 0.83) for (a) and $r \ge 0.80$ (0.80; 0.86; 0.89; 0.94) for (b).

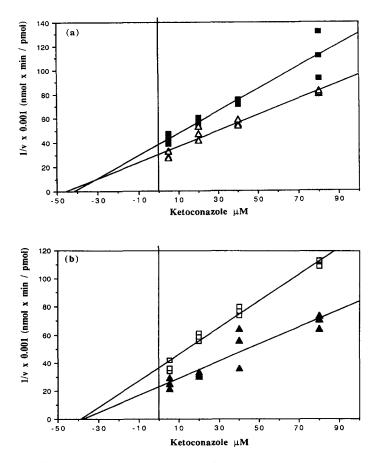


Fig. 5. Inhibitory effect of ketoconazole on 25-hydroxylation of vitamin D_2 and D_3 . The incubations were performed as described in the Experimental section except that the incubation time was 20 min. Ketoconazole was dissolved in dimethylsulphoxide. In (a) the concentration of vitamin D_2 was $12.5 \,\mu M$ (\blacksquare) and $25.0 \,(\triangle)$ and in (b) the concentration of vitamin D_3 was $12.5 \,\mu M$ (\square) and $25.0 \,(\triangle)$. The continuous line is the corresponding linear regression fitting while the data points are from three experimental values, with $r \ge 0.90 \,(0.90; 0.95)$ for (a) and $r \ge 0.85 \,(0.98; 0.85)$ for (b) The intersection of the two lines define the K_i [31].

matography on octylamine-Sepharose, hydroxylapatite, Q-Sepharose and S-Sepharose. The 25-hydroxylase activity against vitamin D₂ and D₃ was analysed in the different purification steps (Table 1). The highest activities towards both substrates were found in the same fractions during purification. The highest vitamin D_2 25-hydroxylase activity and the highest cytochrome P-450 content were in the 25 mM sodium acetate fraction from the S-Sepharose column. This fraction was used as the final vitamin D₂ 25-hydroxylase preparation and it had a specific content of 13.0 nmol of cytochrome $P-450 \times mg$ of protein⁻¹. The specific 25-hydroxylase activity expressed as pmol of product formed $\times \min^{-1} \times mg$ of protein⁻¹ was 1270 for 25-hydroxyvitamin D₂ and 2407 for 25-hydroxyvitamin D₃ (Table 1). The ratio between 25-hydroxylase activities towards vitamin D_2 and D_3 was about 1:2 in all purified fractions including the side fractions. The enzyme preparation showed a single protein band with an apparent M, of 50,500 upon gel electrophoresis (Fig. 1). The enzymatically formed product was identified as 25-hydroxyvitamin D₂ by combined gas chromatography-mass spectrometry.

Structural characterization

The purified microsomal vitamin D_2 25-hydroxylating cytochrome *P*-450 (1 nmol) was analysed with respect to N-terminal amino acid sequence. The sequence of the first 25 amino acids (97% repetitive yield) was as follows: Gly-Leu-Leu-Thr-Gly-Asp-Leu-Leu-Gly-Ile-Leu-Ala-Leu-Ala-Met-Val-Ile-Phe-Leu-Leu-Leu-Val-Asp-Leu-Met. The first 16 amino acids are identical with those reported for the previously purified microsomal vitamin D_3 25-hydroxylase from pig liver in which case the sequence of only 16 N-terminal amino acids was determined [18]. The sequence differs from those of the male-specific rat liver microsomal and the mitochondrial vitamin D_3 25-hydroxylases reported previously [7, 13, 26, 27; cf Table 2].

Catalytic properties

Figure 2 shows that the conversion of vitamin D_2 into 25-hydroxyvitamin D_2 was about linear with the amount of cytochrome P-450 up to 0.3 nmol and with time up to 30 min. Longer incubation times resulted in

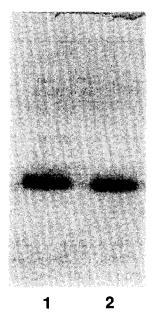


Fig. 6. SDS-PAGE and immunoblotting of purified microsomal 25-hydroxylating cytochromes P-450 from pig liver. The SDS-PAGE was performed as described in legend to Fig. 1. Electrophoretic transfer and immunoblotting with mAb 25H6 raised against vitamin D₃ 25-hydroxylase [18] was performed as described previously [7]. Lane 1, vitamin D₂ 25-hydroxylase (1 µg); lane 2, vitamin D₃ 25-hydroxylase [cf 18] (1 µg).

decreased product formation. The system was saturated with 2 units of NADPH-cytochrome P-450 reductase and with 40 μ M of vitamin D₂. The apparent K_m for the 25-hydroxylation of vitamin D₂ in the reconstituted system was 4.5 μ M (Fig. 5). Table 3 summarizes the specificity of the purified vitamin D₂ 25-hydroxylase with vitamin D₂, vitamin D₃, 1 α -hydroxyvitamin D₂, 1 α -hydroxyvitamin D₃, 5 β cholestane-3 α ,7 α -diol and cholesterol as substrates. The enzyme catalysed 25-hydroxylation of all substrates except cholesterol. No 27-hydroxylase activity towards 5 β -cholestane-3 α ,7 α -diol could be detected.

Effects of pH and partial denaturation of the enzyme by temperature and N-bromosuccinimide on the 25-hydrox-ylation of vitamin D_2 and D_3

A series of experiments was performed to exclude the possibility that the preparation might be heterogeneous and contain two closely related 25-hydroxylases. Figure 3(a) shows how the 25-hydroxylase activities towards both substrates were affected by different pH. The 25-hydroxylase activities towards vitamin D₂ and D₃ had pH optima between 7.0 and 8.2. Figure 3(b) shows that the enzyme activities decreased in parallel when the enzyme preparation had been treated at 37, 45, 50 and 60°C for 3 min prior to incubation.

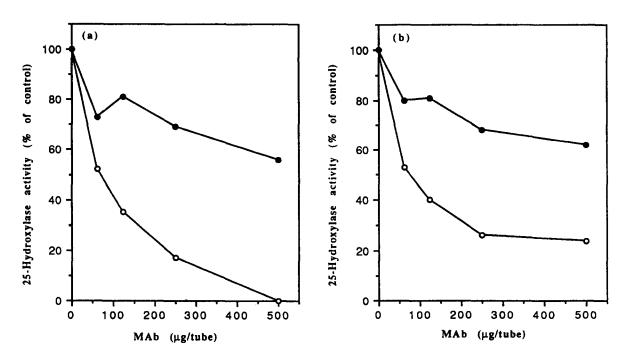


Fig. 7. Effect of mAb 25H6 (against the pig liver microsomal vitamin D_3 25-hydroxylase) on the 25-hydroxylation of vitamin D_2 (a) and D_3 (b). Cytochrome P-450 (0.2 nmol) was incubated with the indicated amounts of Sepharose-bound mAb 25H6 (\bigcirc) or mAb 26·C·5 (\bigoplus) (against a mitochondrial 26-hydroxylase and used as an irrelevant antibody) and assayed for hydroxylase activity as described in the Experimental section. Inactivated CNBr-Sepharose without antibody was used as control. Results are given as percentage of control values for 25-hydroxylase activity in incubations without antibody. The 100% control value for vitamin D_2 was 66 pmol \times min⁻¹ \times nmol of cytochrome P-450⁻¹ and for vitamin D_3 112 pmol \times min⁻¹ \times nmol of cytochrome P-450⁻¹. The results from three experiments are given as the means.

		Vitamin D ₂ 25	5-hydroxylation	Vitamin D_3 25-hydroxylation				
	Cytochrome $P-450$ (nmol × mg of protein ⁻¹)	$(pmol \times min^{-1} \times mg of protein^{-1})$	$(pmol \times min^{-1} \times nmol of P-450^{-1})$	$(pmol \times min^{-1} \times mg of protein^{-1})$	(pmol × min ⁻¹ × nmol of P -450 ⁻¹)			
Microsomes Hydroxylapatite	0.5	0.8 ± 0.4	1.5 ± 0.8	0.9 ± 0.1	1.8 ± 0.3			
(120 mM-phosphate eluate) S-Sepharose	2.5	130 <u>+</u> 38	52 ± 15	188 ± 12	75 ± 6			
(25 mM-sodium acetate eluate)	15.4	2787 ± 62	181 ± 4	3450 ± 585	224 ± 38			

Table 4. Hydroxylase activities at different steps in the purification of a microsomal cytochrome P-450 vitamin D_2 25-hydroxylase from liver of female pies

Details of the purification and incubation procedures are given in the Experimental section. The result from five experiments are given as the means \pm SD.

Figure 3(c) shows that the 25-hydroxylase activities towards vitamin D_2 and D_3 decreased upon treatment for 1 h with different concentrations of N-bromosuccinimide.

Competition between vitamin D_2 and D_3 as substrates for vitamin D_2 25-hydroxylase

25-Hydroxylation of vitamin D_2 by the purified cytochrome *P*-450 was inhibited by addition of increasing amounts of vitamin D_3 . Conversely, the 25hydroxylation of vitamin D_3 was inhibited by addition of vitamin D_2 . Figure 4 shows double-reciprocal plots from experiments in which varying amounts of vitamin D_2 were incubated in the presence of different concentrations of vitamin D_3 (a) and of varying amounts of vitamin D_3 in the presence of different concentrations of vitamin D_2 (b). The results from these experiments show that vitamin D_3 competitively inhibits the 25-hydroxylation of vitamin D_2 and vitamin D_2 competitively inhibits the 25-hydroxylation of vitamin D_3 . These results support the contention that 25-hydroxylation of vitamin D_2 and D_3 is catalysed by a common active site.

Inhibition of the 25-hydroxylation of vitamin D_2 and D_3 by ketoconazole

Ketoconazole, a non-steroidal inhibitor of several cytochromes P-450, was found to be a common inhibitor for 25-hydroxylation of both vitamin D_2 and D_3 . Experiments were carried out with two concentrations of the respective substrates in the presence of various concentrations of ketoconazole. To obtain apparent K_i values the data were analysed using Dixon plots [28]. Figure 5 shows that ketoconazole inhibited 25-hydroxylase activities towards vitamin D_2 and D_3 with about the same apparent K_i value, 32 and 40 μ M, respectively. The results confirm that a common enzyme catalyses 25-hydroxylation of the two substrates.

Comparison of electrophoretic and immunological properties with a previously reported vitamin D_3 25-hydroxylase

Figure 1 shows that the vitamin D_2 25-hydroxylase had the same apparent M_r (=50,500) as vitamin D_3 25-hydroxylase. The immunoblotting experiments in Fig. 6 show that the monoclonal antibody (25H6) directed against the vitamin D_3 25-hydroxylase [18] recognized the vitamin D_2 25-hydroxylase. To further establish the identity of the two 25-hydroxylases the monoclonal antibody was coupled to Sepharose and incubated with the purified vitamin D_2 25-hydroxylase. After incubation, the antibody–Sepharose was removed and the supernatant was assayed for 25-hydroxylase activity towards vitamin D_2 and D_3 , respectively, in a reconstituted system. As a control, Sepharose was coupled to a monoclonal antibody, directed against a mitochondrial 27-hydroxylase from pig liver. As shown in Fig. 7, increasing amounts of mAb 25H6 but not the irrelevant antibody was able to bind and decrease the 25-hydroxylase activity towards both vitamin D_2 and D_3 .

25-Hydroxylase activity in liver microsomes and purified vitamin D_2 25-hydroxylase from female pig

Table 4 shows the 25-hydroxylase activity towards vitamin D_2 and D_3 in the microsomes, a partially purified cytochrome P-450 and an apparently homogeneous preparation of vitamin D_2 25-hydroxylase from livers of female pigs. The 25-hydroxylase activities and specific cytochrome P-450 content were similar as those in the same fractions from castrated male pigs. Figure 1 shows that the female enzyme has the same apparent M_r as the male enzyme. It has earlier been shown that a monoclonal antibody raised against the vitamin D_3 25-hydroxylase [*cf* 18] recognized protein both in male and female pig that are present in similar amounts with the same apparent M_r .

DISCUSSION

Previous work on 25-hydroxylation in this and other laboratories has not resulted in the purification or identification of a cytochrome P-450 responsible for 25-hydroxylation of vitamin D₂ [3, 9, 16]. The apparently homogeneous microsomal vitamin D₂ 25-hydroxylase described in the present communication also catalysed 25-hydroxylation of vitamin D₃. Taken together, the results strongly indicate that a common enzyme catalyses 25-hydroxylation of the two vitamin D compounds in pig liver microsomes and that this cytochrome P-450 is, in fact, identical with the recently purified vitamin D₃ 25-hydroxylase from pig liver microsomes [18]. In view of the reports that two previously well-characterized hepatic vitamin D₃ 25hydroxylases, i.e. CYP 27 and CYP 2C11, do not show vitamin D₂ 25-hydroxylase activity [3, 9] it is of interest to compare their properties with those of the microsomal 25-hydroxylase from pig liver. The turnover for 25-hydroxylation of vitamin D_3 is of the same order of magnitude for the three enzymes. The mitochondrial vitamin D 25-hydroxylase was originally purified from rabbit liver in this laboratory [5, 29] and rat liver in Okuda's laboratory [6, 30]. This enzyme, which is present also in human liver, catalyses 27-hydroxylation of C_{27} -steroids in bile acid biosynthesis with a turnover that is more than 20 times higher than that for vitamin D_3 [5, 9–12]. Okuda and coworkers [10–12] have presented overwhelming evidence that the mitochondrial vitamin D₃ 25-hydroxylase is identical with the sterol 27-hydroxylase CYP 27, an obligatory cytochrome P-450 enzyme in bile acid biosynthesis [13, 31]. CYP 2C11 in rat liver microsomes is male specific and shows testosterone 16α -hydroxylase activity [4, 7, 8]. This cytochrome P-450 has not so far been detected in other species. CYP 27 and CYP 2C11 belong to separate cytochrome P-450 gene families [8]. The 25-hydroxylase from pig liver microsomes in the present communication showed properties which were fundamentally different from those of both CYP 27 and CYP 2C11. Thus, the N-terminal amino acid sequence was markedly different from that of the other two enzymes. Unlike the mitochondrial CYP 27 it is not active in 27-hydroxylation of bile acid intermediates. The pig liver enzyme showed no testosterone 16α -hydroxylase activity, was not sex specific and could be isolated in the same yield and with the same activity from both male and female pigs. It thus appears that the pig enzyme is sufficiently different from CYP 27 and CYP 2C11 to represent a novel 25-hydroxylase which is active towards both vitamin D_2 and D_3 .

Acknowledgements—This work was supported by the Swedish Medical Research Council (projects 03X-218 and 03X-3532) and the Magnus Bergvall Foundation. We are grateful to Drs Ingemar Björkhem and Erik Lund for help with the identification of 25-hydroxyvitamin D_2 .

REFERENCES

- DeLuca H. F.: Vitamin D metabolism and function. In Monographs on Endocrinology (Edited by F. Gross, A. Labhart, T. Mann and J. Zander). Springer-Verlag, Berlin (1979) pp. 1-79.
- Holick M. F.: Vitamin D: Photobiology, metabolism, and clinical application. In *The Liver: Biology and Pathobiology* (Edited by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter and D. A. Shafritz). Raven Press, New York (1988) pp. 475-493.
- Andersson S., Holmberg I. and Wikvall K.: 25-Hydroxylation of C₂₇-steroids and vitamin D₃ by a constitutive cytochrome P-450 from rat liver microsomes. *J. Biol. Chem.* 258 (1983) 6777–6781.
- Hayashi S., Noshiro M. and Okuda K.: Isolation of a cytochrome P-450 that catalyzes the 25-hydroxylation of vitamin D₃ from rat liver microsomes *J. Biochem.* 99 (1986) 1753–1763.

- 5. Dahlbäck H. and Wikvall K.: 25-Hydroxylation of vitamin D_3 by cytochrome *P*-450 from rabbit liver mitochondria. *Biochem. J.* 252 (1988) 207-213.
- Masumoto O., Ohyama Y. and Okuda K.: Purification and characterization of vitamin D 25-hydroxylase from rat liver mitochondria. J. Biol. Chem. 263 (1988) 14256-14260.
- Andersson S. and Jörnvall H.: Sex differences in cytochrome P-450 dependent 25-hydroxylation of C₂₇-steroids and vitamin D₃ in rat liver microsomes. J. Biol. Chem. 261 (1986) 16932-16936.
- Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O., Okuda K. and Nebert D. W.: The P-450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA 12 (1993) 1-51.
- Guo Y.-D., Strugnell S., Back D. W. and Jones G.: Transfected human liver cytochrome P-450 hydroxylases vitamin D analogs at different side-chain positions. *Proc. Natn. Acad. Sci. U.S.A.* 90 (1993) 8668-8672.
- Ohyama Y., Masumoto O., Usui E. and Okuda K.: Multi-functional property of rat liver mitochondrial cytochrome P-450 J. Biochem. 109 (1991) 389-393.
- Usui E., Noshiro M., Ohyama Y. and Okuda K.: Unique property of liver mitochondrial P450 to catalyze the two physiologically important reactions involved in both cholesterol catabolism and vitamin D activation. FEBS Lett. 274 (1990) 175-177.
- Akiyoshi-Shibata M., Usui E., Sakaki T., Yabusaki Y., Noshio M., Okuda K. and Ohkawa H.: Expression of rat liver vitamin D₃ 25-hydroxylase cDNA in Saccharomyces cerevisiae FEBS Lett. 280 (1991) 367-370.
- Andersson S., Davis D. L., Dahlbäck H., Jörnvall H. and Russel D. W.: Cloning structure and expression of mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. *J. Biol. Chem.* 264 (1989) 8222-8229.
- Hiwatashi A. and Ichikawa Y.: Purification and organ-specific properties of cholecalciferol 25-hydroxylase system; cytochrome P-450_{D25}-linked mixed function oxidase system. *Biochem. Bio*phys. Res. Commun. 97 (1980) 1443-1449.
- 15. Holmberg I.: Differences in the metabolism of vitamin D_2 and vitamin D_3 by subcellular fractions from rat liver. *Biochim. Biophys. Acta* 800 (1984) 106-109.
- Postlind H. and Wikvall K.: Purification of a cytochrome P-450 from pig kidney microsomes catalysing the 25-hydroxylation of vitamin D₃. Biochem. J. 253 (1988) 549-552.
- Jones G., Schnoes H. K. and DeLuca H. K.: An in vitro study of vitamin D₂ hydroxylases in the chick. J. Biol. Chem. 251 (1976) 24-28.
- Axén E., Bergman T. and Wikvall K.: Purification and characterization of vitamin D₃ 25-hydroxylase from pig liver microsomes. *Biochem. J.* 287 (1992) 725-731.
- Fieser L. and Rajagopalan S.: Selective oxidation with N-bromosiccinimide. J. Am. Chem. Soc. 71 (1949) 3938-3941.
- Hansson R. and Wikvall K.: Properties of reconstituted cholesterol 7α-hydroxylase system from rat and rabbit liver microsomes. *Eur. J. Biochem.* 93 (1979) 419-426.
- Yasukochi Y. and Masters B. S. S., Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P-450) reductase purified by biospecific affinity chromatography J. Biol. Chem. 251 (1976) 5337-5344.
- Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J.: Protein measurement with the folin phenol reagent. *J. Biol. Chem.* 193 (1951) 265-275.
- 23. Omura T. and Sato R.: The carbon monoxide-binding pigment of liver microsomes. *J. Biol. Chem.* 239 (1964) 2379-2385.
- 24. Björkhem I. and Holmberg I.: Mass fragmentographic assay of 25-hydroxyvitamin D_3 . Methods Enzym. 67 (1980) 385-393.
- Kaiser R., Holmquist B., Hempel J., Vallee B. L. and Jörnvall H.: Class III human liver alcohol dehydrogenase: a novel structural typ equidistantly related to the class I and class II enzymes. *Biochemistry* 27 (1988) 1132–1140.
- Usui E., Noshiro M. and Okuda K.: Molecular cloning of cDNA for vitamin D₃ 25-hydroxylase from rat liver mitochondria. *FEBS Lett.* 262 (1990) 135-138.

106

- Cali J. J. and Russel D. W.: Characterization of human sterol 27-hydroxylase a mitochondrial cytochrome P-450 that catalyzes multiple oxidation reactions in bile acid biosynthesis. *J. Biol. Chem.* 266 (1991) 7774-7778.
- 28. Dixon M. and Webb E. C.: Enzymes. Academic Press, New York, 3rd Edn (1979).
- Dahlbäck H.: Characterization of the liver mitochondrial cytochrome P-450 catalyzing the 25-hydroxylation of vitamin D₃. In Vitamin D; Gene Regulation, Structure-Function Analysis and Clinical Application (Edited by A. W. Norman, R. Bouillon and M. Thomasset). Walter de Gruyter, Berlin (1991) pp. 259-260.
- Okuda K., Ohyama Y., Usui E. and Noshiro M.: Purification and cloning of cytochrome P-450s involved in calcium homeostasis. In Function Analysis and Clinical Application (Edited by

A. W. Norman, R. Bouillon and M. Thomasset). Walter de Gruyter, Berlin (1991) pp. 246-254.

- 31. Björkhem I.: Mechanism of degradation of the steroid side chain in the formation of bile acids. J. Lipid Res. 33 (1992) 455-471.
- 32. Laemmli U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T_4 . Nature 277 (1970) 680-685.
- Wray W., Boulikas T., Wray V. P. and Hancock R.: Silver staining of proteins in polyacrylamide gels. *Analyt. Biochem.* 118 (1981) 197-203.
- Haugen D. A. and Coon M. J.: Properties of electrophoretically homogeneous phenobarbital-inducible and β-Naphthoflavoneinducible forms of liver microsomal cytochrome P-450. J. Biol. Chem. 251 (1976) 7929-7939.